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Influence of precracking load on critical 
stress intensity factor of mild steel 
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The effects of precracking load on critical stress intensity factor are studied. A plane 
stress model of elastic/plastic stress distribution which has strain hardening effects 
included is used. The effects of residual stresses and strain hardening due to fatigue load 
are calculated by choosing plastic zone size as fracture criterion. And experimental results 
are obtained to prove the reliability of theoretical calculations. The results show that the 
influence of fatigue load can be estimated directly by a computer program. 

1. Introduction 
In the test procedures for critical stress intensity 
factor measurements, it is recommended to pre- 
crack the specimen by fatigue. However, the poss- 
ible effects of residual stress by fatigue are not 
considered. 

In order to establish the role played by residual 
stress distributions in crack propagation rates, 
several authors [1, 2] have attempted to calculate 
and measure the residual stresses by different 
models and experimental techniques. For example, 
Elber [3], Adams [4] focused on crack closure 
phenomena to obtain information on residual 
stress. A direct measurement of residual stress 
performed in photoelastic materials is given in 
the report of Post [5]. Tirosh [6] used a theor- 
etical model, based on dislocation mechanics, to 
predict the residual stress distribution resulting 
from fatigue cracking. Using the linear elastic frac- 
ture mechanics, Rice [7] suggested a relation for 
plastic zone size R given by Equation 1. 

R = 2ry = (1) 

where K is the stress intensity factor and ay is 
the yield strength of the material and ry is shown 
in Fig. 1. 

Cyclic loading produces forward and reverse 
plastic deformation at the crack tip during loading 
and unloading parts of the cycle, respectively [8] 
which gives rise to residual strains in the neigh- 

0022-2461/83 $03.00 + .12 

bourhood of the crack tip. Elber [9] suggested an 
effective stress intensity factor at the crack tip, 
on account of the residual deformations. He used 
a factor U which is known as the effective stress 
range factor to evaluate the effect of residual 
stresses by cyclic loading. Lal [10] presents a 
model to calculate the plastic zone size at the 
crack tip using mechanical properties of the 
material and loading conditions (Node I). The 
parameter U controlling the effects of residual 
deformations has been incorporated. Dahl [11] 
has studied experimentally the influence of 
plastic zone size on fracture toughness. 

These are few papers which discuss the in- 
fluence of precrack histories on fracture tough- 
ness. This is also true for theoretical analysis. In 
the present paper, a plane stress model of elastic/ 
plastic stress distribution is used. Strain hardening 
effects will be considered. The residual stress and 
plastic zone size after loading and unloading can 
be calculated by the present model. Critical 
plastic zone is chosen as the fracture criterion to 
evaluate the instability of the crack extension. 
The effects of  strain hardening and compressive 
residual stress within this criterion on fracture 

�9 toughness can be seen by using the present calcu- 
lation. Experimental results are obtained to show 
the reliability of the theoretical calculation. The 
future studies will show the effects of crack pro- 
pagation on the residual stress distribution, plastic 
zone size and fracture toughness. 
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Figure 1 Distr ibution of  the  stress componen t  in the  
crack-tip region. 

2. Stress  d i s tr ibut ion  near a crack 
The stress distribution in a cracked element can 
be calculated by the theory of elasticity, with the 
assumption of linear elastic behaviour. The most 
simple model is an infinite sheet loaded by a tensile 
stress a (as shown in Fig. 2). The Westergaard 
approach [12] to calculate the stress distribution 
near a sharp crack is the best method to examine 
the properties of a particular type of crack. A 
suitable complex function is chosen to satisfy 
the boundary conditions and the properties of 
compatability. The solution of plane stress is an 
infinite plate with a small crack under uniaxial 
tension a t y  = 0 is given as follows: 

S ( x )  = o / (1  - ( c / x ) 2 )  ~'2 (2) 

The stress distribution of a plane with a finite 
width 2b can be obtained by modifying the solu- 
tion of a factor f (c )  which is derived by making 
the summation stresses equal to the applied load. 
This characteristic is shown in Equations 3 and 4 
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Figure 2 Westergaard's model  of  a crack under  uniaxial 
tension in an infinite plate. 
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b 
a" 2b = 2 o*x/(x2--c2)  1/2 dx (3) 

c 

a* = o" b/(b z -  c2) 1/: = a" f (c )  (4) 

where f (c )  = b / (b : - -  c2) u2 = 1/[1 -- (c/b)2] 1/2 = 
1/(1 -- N2)  1/2 in which the dimensionless parameter 
N = c/b is used. 

Analytical solutions of stress distribution in the 
field of a mixed elastic/plastic field has been 
obtained for a plane stress model. Considering the 
elastic stress distribution in plane stress, as shown 
in Fig. 3 the plastic zone is supposed to extend a 
distance D 2 - - c  ahead of the crack tip (x = c). 
Owing to strain hardening, the tensile stress S(x)  
is assumed to be linearly distributed beyond the 
yield strength within this zone. So S(D=) = oy and 
we define S(c )=  %. The material outside the 
plastic zone is assumed to be the same as the 
elastic stress. The elastic stress is distributed for 
an imaginary, extended crack of length 2c l, which 
is expressed by curve BC. 

Lal [10] has studied the influences of ultimate 
strength ou on plastic tensile instability. It was 
proved that the area of yielded zone decreases 
with increasing hardness of the material. He 
pointed out that as the stress at the crack tip 
exceeds the ultimate tensile strength of the 
material, the crack extends further through the 
plastically deformed region. For this reason, ae 
may be assumed equal to Ou after fatigue cracking. 

The stress distributions over the whole plate 
under loading condition are shown in Equations 5 
and 6, 

S(x) = ( o e -  oy)(D=--x) / (D2--c)  + oy 

D2 ~> x > c (5) 

a " f ( ~ , ) x / ( x  ~ - c ~ )  ' '2 

x >~ D2 (6) 

S ( x )  = 

and 

S(D2) = O'y, 

(yy ~- a . f ( c 1 ) O 2 / ( O 2 - - C 2 )  1/2. ( 7 )  

The value of el can be determined under the 
condition that the total loads or curve ABC and 
curve A'B'C' are the same, 

f ~ S ( x ) d x  = f ~  o . f ( c ) x / ( x 2 - c 2 ) l / 2  dx (8) 

+ f b S(x) dx = a f (c)  f ~ 2 S(x ) dx D~ 

f~ X X/ (X  2 - -  C2) 1/2 dx  (9) 
c 
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(11) 

The two unknowns cl and Dz can be obtained by 
solving Equations 7 and 11 simultaneously. 

If the strip is unloaded, the stress in the plastic 
zone does not fit with the elastic stress distri- 
bution. This misfit causes residual stresses. Full 
elastic unloading will cause residual compressive 
stresses at A, exceeding the compressive yield 2.2 
strength. As a result of the unloading process, a 
reversed plastic deformation will occur between 2.0 
c and D4. Obviously D4 - -c  is rfiueh smaller than e: 
D 2 -  c. The elastic/plastic stress distribution R ( x )  " ~  "~ 1.8 
and plastic zone size after unloading are solved by ' . r  

the same procedure as the loading condition. 
Compressive yield strength is assumed to be equal ~ 1,6 
to tensile yield strength. Equations 12 and 13 are / 
used to solve c2 and 0 4. 1.4 

D2 -- D4 
- cry - - -  (oo - %) + cry 

D2 --c  1.2 
- -  c r f ( c2 )D , / (D~  --C22) 1/2 (12) 

(% 4- cry)(D4 -- C) 4- I(D 4 -- c) 92 -- D4 cry) 1.0 
D2 -----~ (crc -- 

- crf(c)(D~ - c~) ~'~ = crf(c~)(D~ -- c b  "~ 

(13) 

Figure 3 Schematic elastic/ 
plastic stress distribution near 
a notch after loading and un- 
loading. 
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It can be seen that c2 and D4 are found by simul- 
taneously solving Equations 12 and 13. If strain 
hardening effect doesn't exist, then the material 
within the plastic zone is rigid-perfectly plastic and 
ae is equal to yield strength cry. The solutions of 
D; which are based on rigid-perfectly plastic 
assumption are compared with Rice's solutions 
in Equation 1. In Fig. 4, plots are made of 
( D ; - - c ) / R  against M =  cr/cry for various values 
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Figure 4 Comparison of (D' 2 -- c)/R against M for various 
values of N. 2307 



T A B L E I Chemical composition of the steel investigated in wt % 

C Si Mn P S Cr Ni V Cu 

0.0758 0.0934 0.2859 0.0037 0.034 0.0417 0.0311 0.0036 0.111 

of  relative crack length N. It can be seen that the 
present results agree with Rice's results very well 
when M and N are small. The difference increases 
with the crack length or increasing gross stress. 

3. Exper imenta l  procedure and results 
Chemical compositions of  the plain carbon steel 
specimen are given in Table I. Specimens were 
annealed at 1173 K for 1 h. Fig. 5 shows the size 
of  the specimens which were machined by electric 

discharge machining. The specimens were pre- 
cracked to a definite length 18.5 mm under three 
different load conditions. The method of  measur- 
ing the K~ values was suggested by reference [13] 
on a closed loop electrohydraulic testing machine 
at room temperature. The K e can be calculated by 
the following equation [14]. 

Ko- 

where P is the fracture load and t is the specimen 
thickness. The results of  static tensile tests and K e 
values are shown in Fig. 6 and Table II, respec- 
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Figure 5 Centre cracked plate's dimensions. 
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tively. The K e value and the plastic zone size 
increases with the increasing of  M = O/Oy. This 
conclusion coincides with DaN's results [ 11 ]. 

4. The influence of fatigue load on 
fracture behaviour 

There are two reasons to explain the influence o f  
fatigue load on critical stress intensity values. 
Before our discussion, we should choose a suitable 
fracture criteria, critical plastic zone Per, to 
prevent instability crack extension from occurring. 
Fracture philosophy by means of  plastic zone size 
is similar to the crack opening displacement (COD) 
concept, but has the advantage that the plastic 
zone is easily determined by K-value cancellation 
of  the Dugdale crack model [15], and it is con- 
venient to calculate the effects of  strain hardening 
and compressive residual stress on Kc from this 
criterion directly. It is well known that under 
plastic deformation when strained to a particular 
value of  the stress, say (iyp* (see Fig. 6) a number 
of  dislocation sources are activated, as a result of  
which the dislocation density increases. The 
resistance to further deformation increases. When 
the material is released and reloaded, yielding of  
the material does not take place until the value of  

* In the applied stress reaches the value of  gyp. 

N 

'E 
E 

E 
I/3 

t 

o ~ 
50 

4O 

3O 

2O 

10 

I I I I  I I I 
0 5 10 15 ZO 25 30 

- -~ .~Stra in  ( % )  

Figure 6 Stress-strain curve. 



T A B L E I I Theoretical and experimental results 

M A (kg) B (Kg) Pex (kg) Kc (kg mm-a/~) Pa (kg) Kea (kgmm -3n) 

0.244 53.94 18.80 3283.09 116.00 3210.34 113.43 
0.365 137.31 69.48 3392.55 119.87 3185.76 112.56 
0.487 299.12 216.50 3752.75 132.59 3237.13 114.38 

other words, the yield strength of the strained 
* This effect can be material is increased to ayp. 

evaluated by Equation 15. 

Strain hardening effect f 
C + Per 

= , c  (o~,, , (x) - Oy) dx 
(15) 

The other reason is compressive residual stresses. 
Dahl [ 11 ] had studied the influence of plastic zone 
size on the fracture toughness value. He concluded 
that fracture toughness increased with plastic zone 
size. Within the plastic zone size the compressive 
residual stresses are the main reason to increase 
the critical stress intensity factor. 

The residual stresses between the crack tip and 
c +per  can affect the load P in Equation 14. 
Compressive residual stress must be compensated 
by external load which makes the fracture load P 
increase. Conversely, tensile residual stress has an 
inverse effect on fracture load. This effect is equal 

to: f c+p 
Residual stresses effect - , c  R ( x )  dx  (16) 

where R ( x )  is elastic/plastic stress distribution 
after unloading. 

For theoretical calculation, the critical plastic 
zone must be determined first. Burdekin [16] 
used the Dugdale approach and has derived 
Equation 17 

8 8Oya log sec fro 
7rE 2Oy 

(17) 

for a nominal stress value less than 0.75( /y ,  a 

reasonable approximation for 6 (crack opening 
displacement), using only the first term of this 
series is 

7ro2 a 
5 - ( 1 8 )  

Eoy 

For a through-thickness crack of length 2a, 

KI = o(rra) 1/2 (19) 
thus 

6Eoy  = K~ (20) 

Since E = Oy/ey, the following relation exists: 

- -  = - -  ( 2 1 )  
e ,  ~Oy / 

By substituting Equation 18 into Equation 19 to 
eliminate a, at the onset of crack instability, we 
can get Equation 22 

6__~ _ (Ket2"  (22) 
e, \ ay / 

From the Dugdale approach 

a ?TO 
- -  C O S -  

a + p 2% 

= 1 -- ~.  \2Cry/ . \ 2 O y ]  (23) 

Neglecting higher order term, p is found as: 

rr 2 o2 a rrK~ 
P -  802 8o 2 (24) 

By substituting Equation 20 into Equation 24, and 
at the onset 

~rE 
Par - 6 ex (25) 

8Oy 

Equation 25 is identical with the limit form of p 
for e /% -+ 0 on the basis of a Dugdale model, and 
its general applicability, irrespective of 0/% value, 
have been verified experimentally [15]. For the 
material used in our studies, experimental result 
of K e for M = 0 . 2 4 4  is equal to l l 6 k g m m  -3/~. 
True value of K c is calculated by iteration and to 
be 114kgmm -3/2. 

rr" 1142 
Oct - - 3.21mm 

8 �9 39.87 
Let 

A : 2 t f 2  ( @ p ( X ) -  Oy)dx 

2 t f  e+per B = R ( x )  dx 
- -  , J C  

Pa = Pex -- A -- B where Pex is the experimental 
fracture load. Pa is the true fracture load which is 
subtracted A + B  from Pex. From Equation 14, 
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Figure 7 The effects of strain hardening and compressive 
residual stressA + B against crack length coefficient N. 

true critical stress intensity factor Kea is 

Kea = Pa Ke (26) 
Pex 

A + B  expresses the double effects of  strain 
hardening and compressive residual stresses. Fig. 7 
shows the curves of  A + B against relative crack 
length N for various values of  gross stress coef- 
ficient M. The influences of  a large crack length 
on A + B with a small value o f  M are almost the 
same as a small crack length. But the influences 
of  crack length are more significant as M increases. 
Theoretical calculations are compared with exper- 
imental resuks in Table II. The three Pa values of  
different appfied gross stresses are very close. The 
average of  actual fracture load i sP ,  v = 3211.08 Kg. 
The percentage error of  (Pa --Pav)/P,v x 100% for 
the three stress coefficients 0.244, 0.365 and 
0.487, are 0.023%, - -0 .789% and 0.81125%, 
respectively. These values are significantly lower 
than experimental  values (Pex --  Pav)/Pav x 100% = 
2.243%, 5.651%, 16.869%. It is shown that  the 

present model  is suitable to calculate the effect of  
precrack load on the critical stress intensity factor 
measurement.  True Ke values can be obtained 
under arbitrary fatigue loading conditions. 

5 .  C o n c l u s i o n s  
A study is made on the influence of  different pre- 
cracking load on the critical stress intensi ty factor 

under plane stress condit ion.  The results obtained 
are summarized as follows: 

1. Analytical  results are closely matched with 

the experimental  data. 
2. Plastic zone size ( D ; -  c) calculated in this 

paper coincide with Rice's result for small crack 

length. 
3. The effect o f  precracking load on the K e 

value can be explained through the strain harden- 
ing effect and compressive residual stress within 
the plastic zone size. 

4. The true Kc-value can be obtained by sub- 
tracting the combined load differences due to 
strain hardening and compressive residual stress 
from the experimental  result under arbitrary 

fatigue loading conditions. 
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